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Biofabrication
- silicatein alpha
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Overview why biofabricate machines and materials?

Goal | to make functional components of mechanical, electrical, optical and fluidic systems.
Approach
1. Clone biological pathways for manipulation of metals, silicon, gels and other substrates.

2. Couple to a sensing element of choice.
3. Integrate into proper support.

Biomimetic synthesis of ordered
silica structures mediated
by block copolypeptides

Jennifer M. Cha“, Galem D. Stucky' “, Danied E. Morse
& Timothy J. Deming **

Cha et al, Nature 403, 289-292 (2000)
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Biofabrication of electro-optic component from light

Blue light sensor

> |
¥

Embedding of bacteria in

support (PDMS) ——

Silicatein A

Support doped with metal/silicon salt
and with embedded bacteria

Alginate-silica beads as an easy route
for bacterial embedding in PDMS and

other mechanical supports (plastics, - -
alloys) through a photomask

Illuminating with blue light

Patterned expression of
Silicatein A & synthesis of
metal conductors
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Biomaterials
- silk
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Engineering silk

Properties of silk
* silk is one of the strongest natural fibers
* tensile strength comparable to high-grade steel
* extremely lightweight
* highly ductile

Applications
* suture material (stitching)
* wound healing bandages
* tendon/ligament repair
* bulletproof vests
* lightweight structural fabrics
* athletic clothing
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Chemical composition of spider silk

* comprises of proteins with many repeat sequences
*rich in Ala and Gly enabling tight pacing
* interspersed crystalline and amorphous regions
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1-50 pm

OBJECTIVES

Producing silk with desired properties

Expressing spider silk in silkworms ?

- Well-established rearing and extraction

N ¢ . r—C protocols for silkworms
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Need for tools to genetically modifying silkworms

* Transgenesis efficiency: 1 transgenic worm out of 100 injected
eggs

 Need homologous recombination to completely engineer silk
properties

 Developing selection marker — diptheria toxin ?
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Production of Genetically-
modified Silk
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Bioproduction
- lycopene
- tryptophan
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Bioproduction of chemicals

* Using microorganisms for mass production of chemicals

* Modification of existing biosynthetic/metabolic pathways

* High yields compared to total chemical synthesis or
isolation

* Enzymes can make exquisite stereospecific compounds

Challenges

* |dentification of the “gene cluster”

* Found in organisms without genetic engineering tools
developed

* Heterologous expression in tractable host like E coli
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An early success of synthetic biology

Simple suga

++‘
't et Production of artemisinic acid — precursor of
PHiCET S anti malarial compound
" ’ S Heterologous expression of a plant enzyme ADS
‘ - .‘l and 8-gene mevalonate pathway from
Aolalonaie W S.cerevisiae
A

f P— ' ~ :
: v
u
S "o A~ Atemisiin Ro, Paradise and Keasling, Nature, 2006
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Accelerated Evolution 23K combinations per gene
Lycopene (hydrocarbon): 20 genes up, 4 down, 2 new
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Native Pathway Engineering with Synthetic Promoters
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Applications

 Biomaterials
Biofabrication of circuits
Engineered silk

e Biofilms — microbial
consortium

e Production of industrial
chemicals
Lycopene
Tryptophan

Outline

Basic Enabling Technologies

Genome Engineering
Biosensors
Orthogonally interacting
protein pairs

DNA synthesis
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3 Protein-directed recombination strategies

1. Integrase/recombinase “S=r "
M Gateway) 3\\_ A Sum

Synaptic
Interface )

$®C31, Cre-lox =L \\

2. Meganucleases
Scel, Drel

3. Zn Finger
Nucleases

* Design, activity, and structure of a highly specific artificial endonuclease. Mol Cell. 2002
Chevalier, Kortemme, Chadsey, Baker, Monnat, Stoddard.

* A conformational switch controls the DNA cleavage activity of lambda integrase. Mol C%lg
2003 Aihara, Kwon, Nunes-Duby, Landy, Ellenberger
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Support 4 Genome engineering strategies

903 —
<>

#1: ds-Circle x Circle  #2: ds-Linear x Circle
2 step recA+ recombination 1 step 5’>3’exo Reda/E b/T
Select + counterselect  Select
Link et al J. Bact 1997 Zhang et al Nat.Gen 1998 Yu et al. PNAS 2000
(Open-access) (GeneBridges license)

#3: ss-90mer x ds-Circle H#4: ss-Mb x ds-Circle conjugation
Costantino &Court PNAS’03

G = e —
”“‘\‘i-*i‘::‘:;;-:rq,-;x_ = o= _-—;-;-_-_-_-;.//-f—‘—'-’f""""
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Multiplex Automated Genome Engineering (MAGE)

Allelic Replacement

5 ——
Nuh == « Strain: MG1655, AmutS, integrated A-Red
,69%’" "
R > » Highly complex oligo pools for multiplexed

Replication Fork multi-loci modifications
ﬂgsv*“ « >4 billion bp of targeted genetic variation
e produced per day

3

o Tool for accelerating evolution of an
. %@ organism in the lab
=i @
()
aymineo ONA
v + « ACNNNTCNNCTCONNNNA. . .
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Accelerated Evolution 23K combinations per gene
Lycopene (hydrocarbon): 20 genes up, 4 down, 2 new
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Small-molecule biosensors invivo

* Transcriptional control : protein-DNA-ligand
* Translation control : Riboswitches-mRNA-ligand

* Post-translational control : protein-protein-ligand
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Family of bacterial transcription

Transcriptional control

DNA binding proteins: ada araC arcA argPR
carP cpxR crp cspA cynR cysB cytR deoR
dnaA dgsA fadR farR fhlA flhCD fnr fruR
fur galR gcvA glpR hipB iclR ilvY lacl lexA Ligand-binding E—
Irp malT marR melR met) metR modE nagC POCket )
narL narP ntrC ompR oxyR pdhR phoB purR L

rha$S rpoE rpoH rpoN rpoS soxS torR trpR tyrR

* Ligand-activated Lacl/GalR family
* Allosteric (built-in switch)

* Specificity switch for new ligands

* Potentially tight transcriptional control

Monday, January 17, 2011

22




Riboswitch - attenuators

Translational control

Gene expression off

Adenine B12 FMN Guanine
Glucosamine-6-phosphate Glycine di-GMP
Lysine Molybdenum PreQ1 SAM SAH TPP
theophylline 3-methylxanthine

&)

\\)
\ \\

* Ligand-activated W

* Allosteric (built-in switch)
» Sequence-specific: anti-sense binds mRNA
* Specificity change can be designed

|_||||||||||| l°l||ll

Breaker, Science, 2008 .
Bayer and Smolke, Nature Biotech, 2005 Gene expression on
Isaacs et al, Nature Biotech, 2004
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Ligand-dependent two-hybrid style

Post-translational control

A B

* Protein domains interact when small- C\; ﬁ AD W ‘. | .
molecule is present. Eg: rapamycin «®

* DBD — ZFP, AD — NFkB domain

* AD recruits RNApol ‘
* DNA and ligand specificity change can be

designed (o8 |
* Other reporters : —\__/

* screen — split GFP, split luciferase
* selection — split DHFR

Ho, Biggar, Spencer, Schreiber and Crabtree, Nature, 1996
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Genome engineering 2000-2006

Dupont: 1,3 Propanediol o7 "0

(7 years & $400M R&D)
135 g/l at 3.5 g/l/h for Sorona
90% of theoretical yield from glucose polymers

27 changes to 4.6 Mbp E.coli
6 genes up, 13 down, 8 foreign genes

Yeast Klebsiella E.coli
DARI1 GPP2 dhaB1-3 yqhD 1,3
=P Glycerol-3-P =§ Glycerol = 3HPA =P propanediol
- NADH coB12 - NADPH

31
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